THE EFFECT OF AN ULTRAHIGH FREQUENCY ELECTROMAGNETIC FIELD ON THE FORMATION OF THE PHOTOSYNTHETIC APPARATUS OF SPRING WHEAT SEEDLINGS
DOI:
https://doi.org/10.71453/3034-4174-2025-2-15Keywords:
ultrahigh frequency electromagnetic field, microwave, pre-sowing, spring wheat, Triticum aestivum L., photosynthetic pigments, chlorophylls, carotenoidsAbstract
Pre-sowing treatment of seeds of major food crops in order to increase their yield should be carried out using safe and effective methods, which include ultra-high frequency electromagnetic treatment. The intensity of seedling development is determined not only by external factors, but also depends on the effective functioning of the photosynthetic apparatus, which can be determined indirectly by the content and ratio between different groups of basic and auxiliary photosynthetic pigments. The paper shows the nature of the effect of pre-sowing seed treatment with an ultrahigh frequency electromagnetic field on the content of chlorophylls a and b, carotenoids, as well as their ratios in seven-day seedlings of spring soft wheat varieties Trizo and Novosibirskaya 31. The general condition of the photosynthetic apparatus of the two spring wheat varieties in the control variant is the same. However, the response to the studied microwave processing modes is individual. Thus, the average power mode of 420 watts is recognized as the best mode for the accumulation of chlorophylls and carotenoids in wheat seedlings of the Trizo variety. For Novosibirskaya 31 variety of wheat, all microwave processing modes lead to a decrease in the pigment content. Under the influence of an electromagnetic field, the content of carotenoids increases, which can be considered as an adaptive protection mechanism against stressful conditions.
References
1. Van Dijk, M., Morley, T., Rau, M. L., Saghai, Y. A meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050 / M. Van Dijk, T. Morley, M. L. Rau, Y. Saghai // Nature Food. 2021. Vol. 2, Is. 7. Pp. 494–501.
2. Calzadilla, P. I. Assessing photosynthesis in plant systems: A cornerstone to aid in the selection of resistant and productive crops / P. I. Calzadilla, F. E. L. Carvalho, R. Gomez, S. Signorelli // Environmental and Experimental Botany. 2022. Vol. 201, Is. 19. P. 104950. DOI 10.1016/j.envexpbot.2022.104950.
3. Kiriziy, D. Effects of drought, high temperature and their combinations on the photosynthetic apparatus and plant productivity / D. Kiriziy, A. Kedruk, O. Stasik // Regulation of Adaptive Responses in Plants. New York: Nova Science Publishers, Inc., 2024. Pp. 1–32. https://doi.org/10.52305/TXQB2084.
4. Ayesha, S. Enhancing sustainable plant production and food security: Understanding the mechanisms and impacts of electromagnetic fields / S. Ayesha, Z. Abideen, G. Haider, F. Zulfiqar // Plant Stress. 2023. Vol. 9. P. 100198. DOI:10.1016/j.stress.2023.100198.
5. Гавриленко, В. Ф. Большой практикум по фотосинтезу / В. Ф. Гавриленко, Т. В. Жигалова. Москва : Академия, 2003. 256 с.
6. Wang, P. Reactive oxygen species: multidimensional regulators of plant adaptation to abiotic stress and development / P. Wang, W.-C. Liu, C. Han, S. Wang // Journal of Integrative Plant Biology. 2024. Vol. 66, Is. 3. Pp. 330–367. DOI 10.1111/jipb.13601.
7. Qiu, Z. B. Microwave pretreatment can enhance tolerance of wheat seedlings to CdCl2 stress / Z. B. Qiu, J. T. Li, Y. Zhang, Z. Z. Bi et al. // Ecotoxicology and environmental safety. 2011. Vol. 74, Is. 4. Рp. 820–825. DOI 10.1016/j.ecoenv.2010.11.008.
8. Kondratenko, E. P. Stress Protective Role of Long Chain Fatty Acids in Barley Springs under the Action of Electromagnetic Field of Extreme High Frequency / E. P. Kondratenko, O. M. Soboleva, A. S. Sukhikh, I. A. Sergeeva et. al. // Modern S&T Equipments and Problems in Agriculture. Kemerovo, 25.06.2020 Кемерово : Кузбасская ГСХА, 2020. Pp. 127–139.
9. Соболева, О. М. Изменения содержания алифатических спиртов в проростках ячменя под воздействием электромагнитного поля сверхвысокой частоты / О. М. Соболева, Е. П. Кондратенко, А. С. Сухих и др. // Известия высших учебных заведений. Поволжский регион. Естественные науки. 2020. № 3(31). С. 3–13. DOI 10.21685/2307-9150-2020-3-1.
10. Соболева, О. М. Вклад органов проростка ячменя в формирование ответной реакции на действие СВЧ-стрессора / О. М. Соболева, Е. П. Кондратенко, А. С. Сухих // Вестник Воронежского государственного университета. Серия: Химия. Биология. Фармация. 2022. № 1. С. 38–44.
11. Французов, С.В. Пути повышения полевой всхожести семян и формирование урожайности зерна проса обыкновенного в условиях Оренбургской области : автореф. дис. … канд. с.-х. наук / С. В. Французов. Оренбург, 2002. 19 с.
12. Umesh, M. R. Shade tolerance response of legumes in terms of biomass accumulation, leaf photosynthesis, and chlorophyll pigment under reduced sunlight / M. R. Umesh, S. Angadi, S. Begna, P.H. Gowda et al. // Crop Science. 2022. Vol. 63, Is. 1. Pp. 278–292. DOI 10.1002/csc2.20851.
13. Соболева, О. М. Изменение пигментного состава листьев ячменя при адаптации к водному дефициту после СВЧ-обработки / О. М. Соболева, О. В. Белашова // Вестник Алтайского государственного аграрного университета. 2025. № 2(244). С. 17–22.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Инновационные решения в АПК

This work is licensed under a Creative Commons Attribution 4.0 International License.
Все материалы Журнала распространяются на условиях лицензии Creative Commons Attribution 4.0 International (CC BY 4.0)