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Аннотация. Внедрение технологий минимальной обработки почвы 

требует поиска новых конструкций энергосберегающей техники. Применение 

ротационных разрыхлителей для поверхностной обработки почвы на глубину 

высева семян имеет ряд преимуществ в сравнении с традиционными 

орудиями как по энергоемкости, так и по напряжению воздействия на почву.  

Цель исследования – установить характер распределения давления почвы 

на лопатки ротационного рыхлителя путем имитационного нагружения. Для 

достижения цели применялся имитационный метод моделирования 

нагружения лопаток ротационного рыхлителя почвенной средой. 

Определялись величины нормального давления в разных точках поверхности 

трения лопаток при их движении в круговом почвенном канале. Значения 

нормального давления устанавливались косвенным методом по измерению 

величины износа в разных точках поверхности лопаток. Предварительно на 

поверхности трения наносился легкоистираемый материал и 

магнитоиндукционным методом измерялась интенсивность его истирания.  

Траектория движения лезвия лопатки в почве описывается уравнением 

трахоиды, при этом сам процесс рыхления подобен «копанию» и разделяется 

на два этапа: заглубление и выглубление с перемещением части взрыхленной 

почвы на поверхность поля. Получено уравнение перемещения лопатки в 

почве в зависимости от угла ее поворота: от начала заглубления до 

выглубления, а также теоретически определена зависимость характера 

нагружения лопатки в период перемещения в почве. В результате 

имитационного нагружения лопаток измерялась интенсивность абразивного 

износа в разных точках поверхности трения и получены соответствующие 
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уравнения регрессии, что позволяет судить о характере внешнего нагружения 

лопаток рыхлителя.  

Таким образом, резание почвы при ее рыхлении ротационным 

рыхлителем происходит тремя режущими кромками: нижним лезвием и 

двумя боковыми кромками лопатки рыхлителя, что характеризует 

особенность движения почвы по рабочей поверхности лопатки. При 

производстве рыхлителей следует предусматривать обеспечение 

необходимой износостойкости нижней и боковых кромок лопаток путем их 

упрочнения. 

Ключевые слова: лопатка ротационного рыхлителя почвы, имитационное 

нагружение, абразивный износ.  
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Abstract. The introduction of minimal tillage technologies requires the 

search for new designs of energy-saving equipment. The use of rotary leavening 

agents for surface tillage to the depth of seeding has a number of advantages in 

comparison with traditional tools both in terms of energy intensity and stress on 

the soil. The purpose of the study is to establish the nature of the distribution of 

soil pressure on the blades of a rotary ripper by simulated loading. To achieve this 

goal, a simulation method was used to simulate the loading of rotary ripper blades 

by the soil environment. The values of the normal pressure at different points of 

the friction surface of the blades during their movement in a circular soil channel 

were determined. The values of the normal pressure were determined indirectly 

by measuring the amount of wear at different points on the surface of the blades. 

Previously, an easily removable material was applied to the friction surface and the 

intensity of its abrasion was measured using the magnetoinduction method.  

The trajectory of the blade blade in the soil is described by the trachoid 

equation, while the loosening process itself is similar to "digging" and is divided 

into two stages: deepening and hollowing with the movement of part of the 

loosened soil to the surface of the field. The equation of movement of the blade in 
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the soil is obtained depending on the angle of its rotation: from the beginning of 

the excavation to the excavation. A theoretical dependence of the loading pattern 

of the blade during movement in the soil is obtained. As a result of the simulated 

loading of the blades, the intensity of abrasive wear was measured at different 

points of the friction surface and the corresponding regression equations were 

obtained, which allows us to judge the nature of the external loading of the ripper 

blades. 

Thus, cutting the soil when loosening it with a rotary ripper occurs with three 

cutting edges: the lower blade and two side edges of the ripper blade, which 

characterizes the peculiarity of soil movement along the working surface of the 

blade. In the production of rippers, provision should be made for the necessary 

wear resistance of the lower and side edges of the blades by hardening them. 

Keywords: rotary soil ripper blade, simulated loading, abrasive wear. 

 

Широкое распространение технологии минимальной обработки почвы 

в современной практике земледелия предполагает применение новых 

почвообразующих конструкций техники [1] для поверхностной обработки 

почвы на глубину высева семян [4]. Целенаправленность поиска новых 

конструкций сориентирована на достижение минимальных энергетических 

затрат с сохранением необходимого качества выполнения технологических 

операций [5].  

Применение ротационных разрыхлителей для поверхностной 

обработки почвы на глубину высева семян имеет ряд преимуществ в 

сравнении с традиционными орудиями (культиваторы, лущильники) и 

обеспечивает снижение энергоемкости на 17–22%, сохраняя низкое 

напряжение воздействия на почву (сжатие, растяжения) 0,5–1,5 МПа [2]. 

Традиционно для обработки почвы используют разнообразные рабочие 

органы, в основе которых, как правило, прямой или косо поставленный клин. 

При движении клиновидных рабочих органов в почве процесс разделения 

почвы на устойчивые совокупности вызывает чередование воздействий на 

почву напряжений сжатия, скола и растяжения. При этом прочность почвы на 

сжатие до 10 раз выше, чем при растяжении, а также при чрезмерном сжатии 

наблюдается снижение качества обработанной почвы [6]. Поэтому 

применение рабочих органов, работающих на принципах подобия «копанию» 

почвы, более предпочтительны для технологий минимальной обработки 

почвы [7]. 
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Действительно, составляющие почву структурные агрегаты 

представляют собой устойчивые почвенные совокупности из частиц 

материнской породы, скрепленные достаточным количеством 

агроминеральных образований. При этом структурные агрегаты соединены 

друг с другом отдельными площадками, определяющими их связность. Все 

остальные пустоты заполнены либо водой, либо почвенным воздухом. 

Преодоление этих структурных связей и разделение почвы на устойчивые 

агрегатные совокупности для спелых почв происходят при создании 

внутренних напряжений 0,1–0,3 МПа определенной направленности. В то же 

время для разрушения непосредственно структурных почвенных агрегатов 

требуется создание внутренних напряжений более 10 МПа [2]. Последние 

обстоятельства подчеркивают актуальность разработок новых конструкций 

ротационных рыхлителей почвы.  

Цель исследования – установить характер распределения давления 

почвы на лопатки ротационного рыхлителя путем имитационного 

моделирования.  

 

Материалы и методы 

Использованный в исследовании метод имитационного моделирования 

процесса работы почворежущих деталей обеспечил возможность 

применения необходимой приборной базы измерения и не ограничивал в 

выборе времени проведения измерений [3]. Имитационный стенд 

представлял собой круговой почвенный канал, где почвенная среда состояла 

из почвенно-песчаной смеси (легкий суглинок) необходимой твердости с 

влажностью 18–22%.  

Модель ротационного рыхлителя представлялась в виде отдельной 

секции, на ободе которой размещались прямые радиально расположенные 

лопатки. Радиус обода r = 120 мм и длина лопатки n0 = 70 мм. Нанесение 

легкоистираемого материала на поверхность трения лопаток обеспечивало 

довольно точное измерение магнитоиндукционным способом величин 

износа в разных точках поверхности.  

 

Результаты 

При выборе параметров испытываемой модели ротационного 

рыхлителя почвы учитывались известные результаты теоретических 

исследований и практических проверок [8; 9], в том числе результаты 
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исследований комбинированных рыхлителей и характеристики их 

практической работы [8; 10]. 

 
Рис. 1. Принципиальная схема работы ротационного рыхлителя почвы:  

1 – лопатки; 2 – обод крепления лопаток; 3 – ось вращения обода;  
4 – защитный кожух; 5 – интервал заглубления лопаток;  

6 – интервал выглубления 
 

При выполнении технологического процесса при движении рыхлителя в 

направлении V обод крепления лопаток (2) перекатывается по поверхности 

поля, поочередно внедряя лопатки (1) и проводя рыхление поверхностного 

слоя почвы. Рыхлитель в данном случае применяется бесприводный, а 

вращение обода происходит за счет реактивного действия погруженных в 

почву лопаток. Давление силой (F) создается либо навесной системой 

трактора, либо балластным грузом. Траектория движения лезвия лопатки 

(точка в) осуществляется по трахоиде, параметрическое уравнение которой 

имеет следующий вид:  

x = rt – (r + n) sinα 

y = r – (r + n) cosα,                                              (1) 

где r – радиус обода, мм; n – длина лопатки, мм; t – угол положения 

лопатки, град; α – тот же угол, град.  
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Рис. 2. Фазы перемещения лопатки рыхлителя в почве: 

0, 01, и 02 – перемещение оси обода рыхлителя;  
перемещение а в к а1в1 – заглубление;  

а1в1 к а2в2 – выглубление 
 

В процессе заглубления лопатка поворачивается на некоторой угол α, 

начиная от касания почвы αmax до достижения максимальной глубины 

погружения в почву α = 0, т.е. от а в к положению а1в1 и далее к а2в2. При этом 

длина погружения лопатки в почву зависит от изменения угла поворота α: 

ni = n0 − r (
1

cos α
− 1),                                                     (2) 

где ni – текущее значение длины погружения лопатки; n0 – общая длина 

лопатки, r – радиус обода; α – угол поворота лопатки. 

В первом приближении, если принять условно, что величина 

нормального давления вначале одинакова по всей поверхности трения и 

зависит только от продолжительности перемещения поверхности в почве при 

изменении угла α, с учетом выражения (2) можно считать, что характер 

изменения нормального давления по длине лезвия будет подобен 

зависимости: 

{
ni = n0 − r (

1

cos α
− 1)

Ni = ni NН

 ,                                                     (3) 

где Ni и NH – текущее и некоторое номинальное значение нормального 

давления. 

Физическое нагружение лопаток ротационного рыхлителя проводилось 

путем имитационного моделирования [11]. Учитывая пропорциональность 
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величин нормального давления и интенсивность износа (выноса) материала в 

соответствии с законом Арчарда, принимаем интенсивность износа как 

переменную в исследовании характера распределения давления на 

поверхности трения [12]. 

Ниже графически (рис. 3) представлены результаты измерений 

интенсивностей износа в разных точках поверхности трения лопатки 

рыхлителя ∆И = f(ni). На графике расположены две шкалы абсцисс: α – угол 

поворота лопатки при движении ее в почве и ni – текущее значение длины 

лопатки, а также две оси ординат N(H) – нормальное давление и ∆И(МК) –

интенсивность износа при имитационном нагружении. Получены две 

характеристики, при этом интенсивность нагружения лопатки в обоих 

случаях уменьшается от лезвия к спинке. 

 
Рис. 3. Характер распределения давления почвы по длине лопатки 

ротационного рыхлителя: 
N = f(α) – теоретическое приближение;  
∆И = f(ni) – имитационное нагружение 

 

 

Уравнение регрессии при имитационном нагружении имеет следующий 

вид: 

∆И = –0,0005 n3 + 0,0019 n2  – 0,047 n + 1,176                            (4) 

Результаты измерения интенсивности износа поверхности трения по 

ширине лопатки показаны на рисунке 4. 
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Рис. 4. Характер распределения интенсивностей износа (∆И) 

поверхности трения по ширине лопатки (h) 

 

Ниже дано уравнение регрессии, описывающее интенсивность износа 

по ширине лопатки: 

 ∆И = 0,001h2 – 0,043 h + 1,611 (5) 

Общий контур объемной эпюры интенсивности износа лопатки 

ротационного рыхлителя при взаимодействии с почвой показан на рисунке 5. 

 

 
Рис. 5. Объемный контур эпюры интенсивности абразивного износа 

лопатки ротационного рыхлителя почвы:  
1 – лопатка рыхлителя; 2 – верхняя грань эпюры 

 

Полученная объемная эпюра абразивного износа характеризует 

неравномерность нагружения и износа поверхности трения лопатки 

рыхлителя. Здесь следует отметить, что, как и в большинстве случаев, все 

почворежущие детали различных орудий имеют неравномерные нагружение 

и износ своих поверхностей трения [13; 14]. При этом имеется возможность 

численного моделирования эмпирических данных для практического 

применения [15]. 
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Заключение 

Резание почвы при ее рыхлении ротационным рыхлителем происходит 

по крайней мере тремя режущими кромками. Это нижнее лезвие и две 

боковые кромки лопатки рыхлителя. Перемещение почвы при работе 

рыхлителя происходит не только в направлении от нижнего лезвия, но и от 

боковых граней лопатки, выполняющих функции режущих кромок.  

Траектория движения лопатки в процессе заглубления предполагает 

возможность применения лопаток криволинейной формы, улучшающей их 

заглубляющие способности. 

Практическое применение высокопроизводительных ротационных 

рыхлителей обусловливает необходимость обеспечения при их изготовлении 

разной износостойкости нижней и боковых кромок, как более нагруженных в 

процессе работы. 
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